《苏菲的世界》中西对照阅读 92
92
Acabo de decir el reino vegetal, el reino animal y el reino mineral. Me estoy acordando ahora de ese juego que consiste en que uno se va fuera, mientras el resto de los participantes en la fiesta deben pensar en algo que el pobre de fuera tiene que adivinar al entrar. Los demás invitados han decidido pensar en el gato llamado Mons, que en ese momento se encuentra en el jardín del vecino. El que estaba fuera vuelve a entrar y comienza a adivinar. Los demás sólo pueden contestar «si» o «no». Si el pobrecito es un buen aristotélico, y en ese caso no es ningún pobrecito, la conversación podría transcurrir aproximadamente como sigue: ¿Es algo concreto? (Sí.) ¿Pertenece al reino mineral? (No.) ¿Es algo vivo? (Sí.) ¿Pertenece al reino vegetal? (No.) ¿Es un animal? (Sí.) ¿Es un ave? (No.) ¿Es un mamífero? (Sí.) ¿Es un gato? (Sí.) ¿Es Mons? (¡Sííííííííí! Risas...)
De manera que fue Aristóteles quien inventó este juego. Y a Platón le podemos atribuir el invento del «escondite en la oscuridad». A Demócrito ya le concedimos el honor de haber inventado las piezas de lego
Aristóteles fue un hombre meticuloso que quiso poner orden en los conceptos de los seres humanos. De esa manera sería él quien creara la lógica como ciencia. Señaló varias reglas estrictas para saber qué reglas o pruebas son lógicamente válidas. Bastará con un ejemplo: si primero constato que «todos los seres vivos son mortales» (primera premisa)y luego constato que «Hermes es un ser vivo» (segunda premisa), entonces puedo sacar la elegante conclusión de que «Hermes es mortal».
El ejemplo muestra que la lógica de Aristóteles trata de la relación entre conceptos, en este caso «ser vivo» y «mortal». Aunque tengamos que darle la razón a Aristóteles en que la conclusión arriba citada es válida cien por cien, a lo mejor tendríamos que admitir también que no dice nada nuevo. Sabíamos de antemano que Hermes es «mortal». (Es «un perro» y todos los perros son «seres vivos», que a su vez son «mortales», a diferencia de las piedras del Monte Everest.) Sí, sí, Sofía, lo sabíamos ya. Pero no siempre la relación entre grupos de cosas parece tan evidente. De vez en cuando puede resultar útil ordenar nuestros conceptos.
Me limito a poner un solo ejemplo: ¿es posible que esas crías minúsculas de ratón chupen leche de su mamá exactamente igual que los corderos y cerditos? Pensémoslo: lo que sí sabemos, por lo menos, es que los ratones no ponen huevos. (¿Cuándo he visto un huevo de ratón?) De manera que paren hijos vivos, igual que los cerdos y las ovejas. A los animales que paren los llamamos «mamíferos», y los mamíferos son precisamente animales que chupan leche de su madre. Y ya está. Teníamos la respuesta ya en nuestra mente, pero tuvimos que meditar un poco. Nos habíamos olvidado de que los ratones realmente beben la leche de su madre. Quizás se debió a que nunca habíamos visto ratoncitos mamando. La razón es, evidentemente, que los ratones se inhiben un poco cuando se trata de cuidar a sus hijos en presencia de los seres humanos.
说到动物、植物与矿物,让我想到一个大伙聚会时常玩的游戏:当“鬼”的人必须要离开房间,当他再回来时,必须猜出大家心里面在想什么东西。在此之前,大家已经商量好要想的东西是那只正在隔壁花园里玩耍的猫咪“毛毛”。当“鬼”的人回到房间后就开始猜。其他人必须答“是”或“不是”。如果这个“鬼”受过良好的亚理斯多德式训练的话,这个游戏的情形很可能会像下面描述的一样:
是具体的东西吗?(是门是矿物吗?(不是!)是活的吗?(是!)是植物吗?(不是!)是动物吗?(是!)是鸟吗?(不是!)是哺乳类动物吗?(是!)是一整只动物吗?(是!)是猫吗?(是!)是“毛毛”吗?(猜对了!大伙笑……)
如此看来,发明这个游戏的人应该是亚理斯多德,而捉迷藏的游戏则应该是柏拉图发明的。至于堆积木的游戏,我们早已经知道是德谟克里特斯发明的。
亚理斯多德是一位严谨的逻辑学家。他致力于澄清我们的概念。因此,是他创立了逻辑学这门学科。他以实例显示我们在得出合乎逻辑的结论或证明时,必须遵循若干法则。
我们只单一个例子就够了。如果我先肯定“所有的生物都会死”(第一前提),然后再肯定“汉密士是生物”(第二前提),则我可以从容地得出一个结论:“汉密士会死”。
这个例子显示亚理斯多德的推理是建立在名词之间的相互关系上。在这个例子中,这两个名词分别是“生物”与“会死”。虽然我们不得不承认这两个结论都是百分之百正确,但我们可能会说:这些都是我们已经知道的事情呀。我们已经知道汉密士“会死”。(他是一只“狗”,而所有的狗都是“生物”,而所有的生物都“会死”,不像圣母峰的岩石一样。)不用说,这些我们都知道,但是,苏菲,各种事物之间的关系并非都是如此明显。因此我们可能需要不时澄清我们的概念。
我举一个例子就好了:一丁点大的小老鼠真的可能像小羊或不猪一样吸奶吗?对于小老鼠来说,吸奶当然是一件很吃力的工作。但我们要记得:老鼠一定不会下蛋。(我们什么时候见过老鼠蛋?)因此,它们所生的是小老鼠,就像猪生小猪,羊生小羊一般。同时,我们将那些会生小动物的动物称为哺乳动物,而哺乳动物也就是那些吃母奶的动物。因此,答案很明显了。我们心中原来就有答案,但必须要想清楚,答案才会出来。我们会一下子忘记了老鼠真是吃奶长大的。这也许是因为我们从未见过老鼠喂奶的缘故。理由很简单:老鼠喂奶时很怕见人。